## Mise en place du VLAN entre les deux serveurs

**Notes :** le terme région est à rapproché de "datacenter". Mais un datacenter peut habriter plusieurs codes régions (ex. UK et UK1 pour le datacenter de Londres).

## Attacher le VPN aux instances

- Vérifier que vous avez bien préalablement créer un utilisateur OpenStack avec le rôle "Administrator"
- Se rendre sur l'interface Manager OVH > Public Cloud > Management Interfaces > Horizon
  - Utiliser l'identifiant (hash) et le mot de passe générés automatiquement lors de la création du compte Administrateur : Manager OVH > Public Cloud > Project management > Users & roles
- Dans l'interface d'OpenStack Horizon, sélectionner votre projet et région (GRA7 ou UK1 par exemple) dans le bandeau, puise se rendre dans "Compute" > "Instances"
  - Sélectionner une instance ("sinp-<region>-web" ou "sinp-<region>-db") et choisir l'action "Attach interface"
    - The way to specify an interface : by network
    - Network : sinp-<region>-vpn (10.0.0/16)(nom du vRack préalablement donné)
    - IP Address : 10.0.1.10 (pour sinp-<region>-db), 10.0.1.20 (pour sinp-<region>-web), 10.0.1.30 (pour sinp-<region>-bkp.
    - Gateway : 10.0.0.1

## Fixer l'IP privée sur les instances

#### Debian 12

- Ressource : Configurer une adresse IP en alias
- Se connecter ensuite aux instances. Pour vous connecter, si c'est la première fois, utiliser : ssh debian@<ipv4-instance>
- Une fois connecté, afficher les interfaces réseau du serveur : ip a
  - Normalement, l'interface concernant le réseau public (IPv4 public) est sur "ens3" et l'interface concernant le réseau privé (IPv4 privé) est sur "ens7".
- Désactiver la configuration automatique du réseau, en créant le fichier suivant : vi /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg
  - Ajouter le contenu suivant :

```
network: {config: disabled}
```

- **Note** : la création de ce fichier de configuration empêche l'exécution automatique des modifications apportées à la configuration de votre réseau.
- Modifier le fichier suivant : vi /etc/netplan/50-cloud-init.yaml
- Ajouter la nouvelle interface réseau correspondant au VPN avec le rang d'adresses à utiliser. Exemple de contenu du fichier :

```
network:
   version: 2
   ethernets:
       ens3:
           dhcp4: true
           match:
               macaddress: fa:..:..:a0
           mtu: 1500
           set-name: ens3
        ens7:
           dhcp4: true
           match:
               macaddress: fa:..:..:e9
           mtu: 1500
           set-name: ens7
           addresses:
                - 10.0.1.30/16
```

- Tester vos changements avec la commande : netplan try
- Appliquer les changements avec la commande : netplan apply
- Vérifier l'application des modification avec : ip a
- Redémarrer votre instance avec la commande : systemctl start reboot.target
  - Cela vous déconnecte de l'instance, c'est normal.
  - Vous pourrez vous y re-connecter avec SSH au bout de quelques dizaines de secondes.

#### **Debian 11 et inférieurs**

```
    Se connecter ensuite aux instances, puis modifier le fichier : vi
/etc/network/interfaces.d/50-cloud-init.cfg ou vi
/etc/network/interfaces.d/50-cloud-init
```

- Pour vous connecter, si c'est la première fois, utiliser : ssh debian@<ipv4-instance>
- Afficher les interfaces réseau du serveur : ip a
  - Sur Debian 11, les interfaces ont changées de nom "eth0" devient "ens3" et l'interface "eth1" devient "ens7"
- Dans le fichier 50-cloud-init, une interface "ens3" devrait être présente avec l'IP publique et une interface "ens7" doit y être ajouté avec le contenu suivant :
  - Pour sinp-<region>-web

```
auto ens7
iface ens7 inet static
address 10.0.1.10
netmask 255.255.0.0
mtu 9000
```

Pour sinp-<region>-db

```
auto ens7
iface ens7 inet static
address 10.0.1.20
netmask 255.255.0.0
```

mtu 9000

Pour sinp-<region>-bkp

```
auto ens7
iface ens7 inet static
address 10.0.1.30
netmask 255.255.0.0
mtu 9000
```

- Si d'autres IP en 10.0... sont attachées à votre instance vous pouvez les détacher via l'interface d'Horizon.
- Redémarrer votre instance avec la commande : reboot
  - Cela vous déconnecte de l'instance, c'est normal.
  - $\,\circ\,$  Vous pourrez vous y re-connecter avec SSH au bout de quelques dizaines de secondes.

#### Migration vers Netplan.io

- Ressources : https://pedroagrodrigues.com/posts/Debian\_To\_Netplan/
- Les serveurs mis jour vers Debian 12 ne sont pas migrés automatiquement vers Netplan.
- Collecter les informations :
  - Afficher les noms, adresses MAC, IPv4 concernant les 2 interfaces réseaux avec : ip a
  - $\circ\,$  Afficher les IP des serveurs DNS : resolvectl status
  - Noter les IPv6 du serveur et de sa gateway indiquées sur l'interface OVH Public Cloud de l'instance concernée.
- Installer les paquets suivant : apt update && apt install netplan.io systemdresolved
- Activer les services Systemd :

```
systemctl unmask systemd-networkd.service;
systemctl unmask systemd-resolved.service;
systemctl enable systemd-networkd.service;
systemctl mask networking;
systemctl enable systemd-resolved.service;
```

- Essayer de migrer avec : ENABLE\_TEST\_COMMANDS=1 netplan migrate && sudo netplan try
  - En cas de message d'erreur concernant "mtu", essayer de commenter les lignes en question dans le fichier /etc/network/interfaces.d/50-cloud-init.cfg puis essayer à nouveau
  - Renommer le fichier généré : mv /etc/netplan/10-ifupdown.yaml /etc/netplan/50-cloud-init.yaml
  - Corriger les droits du fichier : chmod 600 /etc/netplan/\*
  - Compléter le fichier qui devrait ressembler à ceci:

```
network:
version: 2
ethernets:
eth0:
addresses:
- <ipv6-du-serveur>/56
```

```
dhcp4: true
  match:
    macaddress: <addresse-mac-de-eth0>
  mtu: 1500
  nameservers:
    addresses:
    -213.186.33.99
    - 0.0.0.0
    search: []
  routes:
      to: ::/0
      via: <ipv6-gateway-serveur>
  set-name: eth0
eth1:
  addresses:
  - <ipv4-privée-du-serveur>/16
  match:
    macaddress: <addresse-mac-de-eth1>
  mtu: 9000
  nameservers:
    addresses:
    - 213.186.33.99
    - 0.0.0.0
    search: []
  set-name: eth1
```

- Attention :
  - les interfaces réseaux peuvent être nommé différemment. Utiliser les noms fournis par ip a.
  - si vous changer les noms des interfaces, s'assurer de modifier les interfaces des zonnes "public" et "internal" du parefeu.
- Désactiver la configuration automatique du réseau, en créant le fichier suivant : vi /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg
  - Ajouter le contenu suivant :

network: {config: disabled}

- $\circ$  Tester Ia configuration : netplan try
- Appliquer la configuration : netplan apply
- Redémarrer : reboot
- Nettoyer: apt purge ifupdown resolvconf -y && rm -rf /etc/network
- Vérifier la présence du lien suivant : ll /etc/resolv.conf
  - Si absent, le créer : ln -sf /run/systemd/resolve/stub-resolv.conf /etc/resolv.conf
- Si tout est ok, il doit être possible de joindre un domaine externe : ping google.fr

#### Notes

• **Connexion impossible en SSH** : si pour une raison ou une autre, vous ne pouvez plus vous connecter à une instance via SSH, il est possible de passer par l'interface du Manager d'OVH ou l'interface d'Horizon. Ces 2 interfaces permettent d'accéder à une Console VNC. Attention, la

console est en Qwerty par défaut, ce qui peut compliquer la saisie du mot de passe...

 Log DHCPDISCOVER avec Debian 10: Pour éviter les logs de DHCPDISCOVER dans le fichier de log /var/log/syslog, commenter les lignes suivantes dans le fichier : vi /etc/network/interfaces

/etc/network/interfaces

allow-hotplug eth1 iface eth1 inet dhcp

allow-hotplug eth2
iface eth2 inet dhcp

### Ajouter une nouvelle région à un VLAN existant

Pour réaliser cette opération, il est nécessaire de passer par l'API OVH v6. Cette API peut s'utiliser via l'interface web disponible :

- Se rendre sur l'interface web de l'API : https://api.ovh.com/console/
- Cliquer en haut à droit sur "login" pour se connecter avec son utilisateur OVH permettant d'accèder au projet Public Cloud concernant dans le Manager OVH.
- Ouvrir le web service : GET /cloud/project/{serviceName}/network/private
  - Indiquer l'identifiant du projet Public Cloud dans le champ "serviceName" (à récupérer sous le nom du projet Public Cloud en haut à gauche dans l'interface du Manager d'OVH).
  - Cliquer sur le bouton "Execute"
  - Récupérer l'identifiant (propriété "id") du VLAN. Format : pn-10xxxxx\_0
  - La propriété "régions" devrait à ce stade n'indiquer que "GRA7"
- Ouvrir maintenant le web service : POST

/cloud/project/{serviceName}/network/private/{networkId}/region

- Remplir le champ "serviceName" comme prédément
- Remplir le champ "networkld" avec l'identifiant du VLAN récupéré précédement.
- Remplir le champ "ProjectNetworkPrivateRegionCreation" > "region" avec le code du datacentre où l'on veut pouvoir accéder à ce VLAN. Dans notre cas : UK1
- Cliquer sur le bouton "Execute"
- Ré-ouvrir le web service : GET /cloud/project/{serviceName}/network/private
  - Cliquer à nouveau sur le bouton "Execute"
  - Vérifier que la nouvelle région, dans notre cas UK1, apparait bien dans la liste.
- Pour rendre visible ce réseau sur le nouveau Datacentre dans l'interface du Manager d'OVH, il peut être nécessaire de se déconnecter et se connecter à nouveau.
- Notes : la création de l'instance en l'associant directement à ce réseau n'a pas fonctionnée. Erreur obtenue : Network ... : requires a subnet in order to boot instances on.. L'instance a été créé sans réseau lié. Utilisaton d'OpenStack Horizon pour associer le réseau à l'instance.

# Ajouter un sous-réseau à un VLAN étendu à une nouvelle région

Lorsque le VLAN existant est étendu au nouveau datacentre, ce dernier ne possède pas de sousréseau. Il faut donc lui associer le même sous-réseau que celui présent dans le datacentre principal. Pour réaliser cela nous passons par la ligne de commande :

- Cela implique de mettre en place un environnement OpenStack comme indiqué dans la documentation d'installation du serveur BKP.
- Récupérer depuis l'interface d'Horizon sur le **datacentre principal**, dans notre cas GRA7 : le nom du réseau (Ex. sinp-aura-vpn ), le nom du sous-réseau (Ex. : (d977881c-84cc) ) et le rang d'IPs du sous-réseau (Ex. 10.0.0.0/16).
- En local, se connecter sur le datacentre secondaire ou se trouve "bkp-srv" : cd sinp-aura-UK1 ; source openrc.sh
- Créer le sous-réseau : openstack subnet create --network "<nom-reseau>" -subnet-range "<rang-ip-sous-réseau>" "<nom-sous-reseau>"
  - Ex.: openstack subnet create --network "sinp-aura-vpn" --subnet-range "10.0.0.0/16" "(d977881c-84cc)"
- Il semble aussi nécessaire de modifier le sous-réseau des 2 datacentres pour utiliser la même IP dans le champ *Gateway*. Par exemple : 10.0.0.1
  - Les 2 sous-réseaux devraient aussi avoir : le même nom et le même ensemble d'IP.
- Attacher ensuite le réseau sur une instance (voir ci-dessus) puis tester la connectivité entre les différentes instances : ping 10.0.1.20 et ping 10.0.1.10

From: https://sinp-wiki.cbn-alpin.fr/ - **CBNA SINP** 

Permanent link: https://sinp-wiki.cbn-alpin.fr/serveurs/installation/vlan?rev=1707835351



Last update: 2024/02/13 14:42